Visual Studio 2012 Load Testing with Custom Performance Counters
by Benjamin Day
Recently, I was talking to a new customer and helping them to map out a plan of attack for their load testing project.  They really wanted to know what they should do in order to make sure that I’m productive when I arrive on-site.  I was surprised and impressed because it’s rare that a customer thinks about how they can help me to help them.  My answer to them was to spend some time dropping custom performance counters into their app in some strategic locations.  They hemmed and hawed a bit on this because getting it done was going to require getting a handful of teams to coordinate.  We discussed the performance counters topic for a few minutes and, eventually someone asked, “If we don’t add in performance counters, are we wasting our time?”  My answer was yes.  In this article, I’ll discuss why that’s the case and how you can quickly plug custom performance counters in to your app to super-charge your load testing and performance tuning efforts.  
The Typical Load Testing Project
So let’s set a little context.  What happens on the typical load testing project?  For me, the projects tend to fall into one of two buckets.  Bucket #1: We’ve got a problem.  Bucket #2: We’ve got a performance penalty clause in our contract and we want to make sure we don’t have any problems.  In the first one, you’re trying to reproduce and then diagnose a known performance problem.  In the second one, you’re trying to verify the performance requirements of the application and, if/when you find a performance problem, fix it.  In both models, you’re staring at performance problems and you need to get them resolved.  
The first step is to be able to reliably recreate those performance problems and this is where Visual Studio 2012’s Load Testing features come in.  A VS2012 Load Test allows you to generate a lot of simulated user traffic against your application.  These Load Tests are composed of Web Performance Tests (WPTs) and unit tests.  WPTs simulate a user performing a set of actions against an HTTP-based web application and unit tests are chunks of C# or VB.NET code that plugs into the VS2012 testing framework.  When you’re load testing a web application, the majority of the tests that you’ll have are going to be WPTs rather than unit tests.  If you’re load testing SQL queries or a service-oriented app, you’ll probably have more unit tests than WPTs.  The idea is that the Load Tests will run these WPTs and unit tests and recreate the application’s performance problems.  
Creating the WPTs and unit tests that make up the load tests is fairly straightforward but the difficult part is figuring out what’s actually slow. The VS2012 Load Test framework gives you tools that helps you to find these problems but you can make it a lot easier for yourself if you think about how to organize your tests.  The best practice is to organize your tests by user story (aka. “use case”).  For example, if you have two use cases that you’d like to include in a Load Test “administrator creates a new user” and “authenticated user submits a support ticket”, then you should have a WPT for each use case.  When you run these tests as part of a Load Test, you’ll get statistics about each of those use cases individually and then (hopefully) you’ll be able to identify one or more slow use cases.  


Is The Database Slow?
It’s a little gift from the universe whenever you can identify individual slow use cases in your suite of WPTs.  Unfortunately, you don’t always receive that gift.  A lot of times it’s just generally slow.  When I’m staring at general slowness, my first instinct is to check for performance issues in the database code.  I’ll do this by going to my Load Test and enabling SQL Tracing for the Run Settings.  SQL Tracing uses the same technology as the SQL Server Profiler and allows the Load Test to capture performance metrics about the individual SQL queries that are being executed against a SQL Server during the execution of your test.  The Run Settings (Figure 1) allow you to specify which servers you want to monitor as part of your test and also numerous configuration values about the execution of the load test itself including the connection values SQL Server Tracing. 
[image: C:\Users\BENDAY~1.BEN\AppData\Local\Temp\SNAGHTML5121242.PNG]
[bookmark: _Ref333426162]Figure 1 -- The Run Settings for a Load Test
You can enable SQL Tracing for your Test Settings by clicking on the appropriate Test Settings node in the Load Test edtor and then viewing the Properties window.  In the Properties window (Figure 2), there are three values: SQL Tracing Enabled, SQL Tracing Connect String, and SQL Tracing Directory.  SQL Tracing Enabled is a Boolean value that turns tracing on or off.  The SQL Tracing Connect String specifies which SQL Server you want to profile.  The third value, SQL Tracing Directory, is a little confusing.  When you use the SQL Profiler client there’s no directory required but when you run SQL Tracing as part of a Load Test, the Profiler output gets written to disk before the results are combined with the data from the rest of the load test.  Therefore, when you enable Tracing for the first time, you’ll need to create a directory on the SQL Server machine and give the Load Test Controller service account permissions to access this folder.  
[image: ]
[bookmark: _Ref333426629]Figure 2 -- The SQL Tracing options for the Run Settings
After you have enabled SQL Tracing, when you run your Load Test, you’ll get a new section on your Load Test Summary that will show you the top 5 slowest SQL operations that happened during your test (see Figure 3).  If you click on any of the links for the slow operations, you can drill into the full details for that SQL command and also see more slow SQL operations.  
[image: C:\Users\BENDAY~1.BEN\AppData\Local\Temp\SNAGHTML5bd2124.PNG]
[bookmark: _Ref333428754]Figure 3 -- Top 5 Slowest SQL Operations
This tracing functionality doesn’t have any awareness of whether these commands are issued by your application but this actually isn’t a bad thing because there’s no guarantee that what’s making your application slow is actually inside of your application.  There could be another application that’s starving your application’s access to SQL Server resources.  Seeing this list of slow SQL commands gives you a place to start to tune your application either by reconfiguring SQL Server or by modifying the stored procedures, queries, and schemas of your application’s database.  
PerfMon Counters
Another helpful feature in the Visual Studio 2012 Load Testing functionality is the ability to capture Windows Performance Monitor Counters (aka. “PerfMon Counters”) as part of your Load Test.  If an application uses PerfMon counters, you can use that data to view real time information about what’s happening in that application.  Thankfully, PerfMon counters are published by Windows, the .NET Framework, ASP.NET, IIS, and virtually every other service application in the Microsoft stack. 
You can configure which PerfMon counters are captured by your Load Test and for which servers by editing the Run Settings for the test.  If you look at Figure 1, you’ll see a section of the Run Settings interface labeled “Counter Set Mappings”.  Under Counter Set Mappings, you can see that my test pulls SQL counters from a server named Borgomale (my database server) and pulls a number of different types of counters from LaLoggia (my web server) including counters for ASP.NET, IIS, and the .NET Framework.  By default the load tests also capture information about the execution of the load test itself from the Load Test Controller machine and any Load Test Agent machines.  If you run your load tests using Visual Studio 2012 to generate the load, then the Controller and Agent will both be your local machine.  There are limits to how much traffic you can generate when you run your Load Tests locally so if you want to generate lots and lots of load, you’ll want to create a Load Test Rig. (For more information, see http://msdn.microsoft.com/en-us/library/dd728093.)  If you’re running your Load Test using a Load Test Rig, the test will automatically know which servers are Controllers and which are Agents and capture the appropriate performance counters and data from those servers.  This data about the load test execution helps you to ensure that slow performance is in your app rather than some kind of problem generating or measuring the load itself.  
[image: C:\Users\BENDAY~1.BEN\AppData\Local\Temp\SNAGHTML5dec14a.PNG]
[bookmark: _Ref333430701]Figure 4 -- Counters in the Test Results
After you execute your Load Tests, you can drill into the results and view the moment-by-moment values for the PerfMon counters that you configured.  Figure 4 shows the values that were captured as part of a test grouped by the server in the left column and also graphed in 5 second intervals on the right.  By examining these PerfMon values, you hopefully can start to see where the bottlenecks are in your application.  
We Need More Information
Unfortunately, you can sometimes capture SQL Server Tracing data and dozens of PerfMon counters and still have no idea what’s causing the problems.  It sometimes feels like you’re just guessing at what your problem is.  Actually, a lot of the time that’s exactly what’s going on. You’re guessing because you really don’t have a clue about what your application is really doing.  You’ve got SQL Tracing data that might show you what database calls that your app in making that are a little pokey and you’ve got PerfMon counters for Windows, .NET, and IIS but these are just telling you what’s happening around your application.  What you really need is for your application to expose its own PerfMon counters.  
In my experience, it’s rare to find a customer who’s created their own PerfMon counters in their apps.  To be honest, in the 10 years or so before I started working with the Visual Studio Load Testing tools, I’d written zillions of lines of C# code but I’d never written a single custom PerfMon counter.  (Guilty.)  When you’re doing Load Testing, having your application tell you where it’s choking is unbelievably helpful.  
Think of it this way.  Let’s say that you figure out that your husband or wife is angry. Without speaking, you then spend the next hour trying to guess what’s causing him or her to be angry.  Maybe you’ll figure it out.  More likely you won’t figure it out or it’ll take you a very long time to figure it out.  The simpler and altogether more straightforward method of figuring out what’s wrong would be to simply ask “uhmmm…dear, what seems to be the matter?”  Same deal with your grumpy app – what better way to know why it’s grumpy than to just ask it by reading it’s PerfMon counters.
Thinking back to my customer’s question – “If we don’t add in performance counters, are we wasting our time?” – my answer was ‘yes’ because trying to guess what’s wrong and then try to tune for it is amazingly inefficient.  It’s not only inefficient but you could also be wasting your effort by tuning something that has absolutely zero to do with the issue.  If you have your own counters, you know exactly what’s going wrong and (probably) as you tune the application, you can watch those counter values change in the (hopefully) right direction.  
What do we need and how do we do it?
For load testing, I’m usually looking for the same three values across a bunch of different operations in the application. If our application is an online document management system, I’ll probably have high-level operations like “Create Document”, “Update Document”, “View Document Versions”, and “Subscribe to Change Notification”.  For each of these operations I’ll almost definitely want to know how many operations have been processed, how many operations per second, and the average duration for each operation.  
I think that a lot of the reason why developers don’t put custom counters in their applications is that it feels like a lot of tedious and repetitive work.  Well, they’re right.  It can be tedious (if you do it wrong) but object-oriented programming can really help out.  In order to help out, I created a class called OperationPerformanceCounterManager.  When you create an instance of this class, you tell it the Performance Monitor Category Name that you want and the name of the operation.  OperationPerformanceCounterManager takes those two pieces of data and then handles all the rest of the logic for creating and managing the performance counters that track how many operations have been processed, how many operations per second, and the average duration for each operation.  


The code sample below is an example of how you might use OperationPerformanceCounterManager in your application.  The DocumentManager class is an example of a class in your application that performs an operation that you’d like to track called “Create Document”.  In the constructor, DocumentManager creates an instance of OperationPerformanceCounterManager for the “Create Document” operation.  Later on, when the CreateDocument(string) method is called, this method first puts the current time in ticks in a variable and then performs the work that it’s supposed to do.  After that work has completed, it gets the number of elapsed ticks since the start of the operation and then passes that information to the OperationPerformanceCounterManager’s RecordOperation() method.  Inside of the RecordOperation() method, the OperationPerformanceCounterManager will update the 3 performance counters for the operation: “Create Document: Average Operation Time”, “Create Document: Operation Count”, and “Create Document: Operations Per Second”.  
public class DocumentManager
{
    private OperationPerformanceCounterManager m_PerfMonCountersForCreateDocument;

    public DocumentManager()
    {
        string categoryName = "My Application Name";

        // initialize an OperationPerformanceCounterManager
        // the Create Document operation
        m_PerfMonCountersForCreateDocument =
            new OperationPerformanceCounterManager(
                categoryName, "Create Document"); 
    }

    public int CreateDocument(string name)
    {
        // get the start time
        var startTicks = DateTime.Now.Ticks;

        try
        {
            // perform the operation
            var documentId = DoCreateDocument(name);

            return documentId;
        }
        finally
        {
            // after the operation completes, record how long it took 
            m_PerfMonCountersForCreateDocument.RecordOperation(
                DateTime.Now.Ticks - startTicks);
        }
    }

    private int DoCreateDocument(string name)
    {
        // do some work            
    }
}
This same pattern will be repeated in all the other places that you need instrumentation in your application.  As you can see, OperationPerformanceCounterManager lets you do this with a minimal amount of code and very little code duplication.  I’ve found that if I create a Singleton class that contains all the instances of OperationPerformanceCounterManager for my application, that I can cut down on the duplication and clutter even further.  The code sample below uses a class called DataAccessCounterLocator to call RecordOperation() on an operation called “Save Web Page”.  DataAccessCounterLocator contains all the variables for the operations in the data access layer for an application and exposes them as properties.  
public class SqlServerCmsWebPageRepository :
    SqlServerCmsRepositoryBase<ICmsWebPage, CmsDatasetTableAdapters.CmsWebPageTableAdapter>,
    ICmsWebPageRepository
{
    public override void Save(ICmsWebPage saveThis)
    {
        var startTicks = DateTime.Now.Ticks;

        try
        {
            DoSave(saveThis);
        }
        finally
        {
            // Call the locator to access OperationPerformanceCounterManager
            DataAccessCounterLocator.Instance.SaveWebPage.RecordOperation(
                DateTime.Now.Ticks - startTicks);
        }
    }

    // ...
}
public class DataAccessCounterLocator
{
    private static object m_SyncRoot = new object();

    private const string CategoryName = "Benday.com CMS Data Access";

    private DataAccessCounterLocator()
    {
        LoadWebPages = new OperationPerformanceCounterManager(
            CategoryName, "Load Web Pages");

        LoadWebPageById = new OperationPerformanceCounterManager(
            CategoryName, "Load Web Page By Id");

        SaveWebPage = new OperationPerformanceCounterManager(
            CategoryName, "Save Web Page");

        SaveFolder = new OperationPerformanceCounterManager(
            CategoryName, "Save Folder");

        SaveLink = new OperationPerformanceCounterManager(
            CategoryName, "Save Link");
    }

    public OperationPerformanceCounterManager LoadWebPages { get; private set; }
    public OperationPerformanceCounterManager SaveWebPage { get; private set; }
    public OperationPerformanceCounterManager SaveFolder { get; private set; }
    public OperationPerformanceCounterManager SaveLink { get; private set; }
    public OperationPerformanceCounterManager LoadWebPageById { get; private set; }

    private static DataAccessCounterLocator m_Instance;
    public static DataAccessCounterLocator Instance
    {
        get
        {
            if (m_Instance == null)
            {
                lock (m_SyncRoot)
                {
                    if (m_Instance == null)
                    {
                        m_Instance = new DataAccessCounterLocator();
                    }
                }
            }

            return m_Instance;
        }
    }    

    // ...
} 
(For a more detailed discussion of my implementation of performance counters and OperationPerformanceCounterManager including complete code samples, please visit http://tinyurl.com/cb8254v.) 
Include Custom Counters in the Load Tests
Once you’ve added your custom PerfMon counters to your application and installed those counters on the appropriate servers, the only remaining task is to add them to your Load Tests.  To do this, you’ll open your Load Test, right-click on the Counter Sets node, and choose Add Custom Counter Set as shown in Figure 5.  This will create a new counter set that is named Custom1 by default.  Right-click on the Custom1 counter set and choose Add Counters.  
[image: C:\Users\BENDAY~1.BEN\AppData\Local\Temp\SNAGHTML957c957.PNG]
[bookmark: _Ref333489168]Figure 5 -- Add Custom Counter Set


You’ll then see a dialog named Pick Performance Counters that lets you read and import your custom performance counters from your server(s).  Figure 6 shows the process of importing the Benday.com CMS Data Access performance counters from a server named LALOGGIA.  On this dialog, you enter the server name, choose the performance counter category, select the counters you want to import, and then click OK.  
[image: C:\Users\BENDAY~1.BEN\AppData\Local\Temp\SNAGHTML96707dd.PNG]
[bookmark: _Ref333490154]Figure 6 -- Import the custom counters


[bookmark: _GoBack]The next step is to right click on the Run Settings for your test and choose Manage Counter Sets.  On the Manage Counter Sets dialog (Figure 7), you’ll enable the capture for the Custom1 counter set for the relevant servers and then click OK.  
[image: C:\Users\BENDAY~1.BEN\AppData\Local\Temp\SNAGHTML9687446.PNG]
[bookmark: _Ref333490222]Figure 7 -- The Manage Counter Sets dialog
Now that you’ve enabled your custom counters for your Load Test, all you have to do is run the test.  When the test has completed, you can examine the test results and you’ll find that all of your custom counters have been recorded along with the rest of the performance counters and the SQL Tracing information.  
Summary
Visual Studio 2012 Load Tests are immensely helpful for surfacing performance problems in your applications.  Out of the box, Load Tests provide you with an easy way to access performance monitor data about the servers that run you app and how your app is interacting with the .NET Framework and SQL Server.  With minor tweeking of the Run Settings for your test, you can easily enable SQL Server Tracing to find underperforming database queries.  This gives you a lot of information with which to diagnose your performance problems but, if you really want to get serious about analyzing your application, take a little time to add some custom performance counters.  Don’t try to read your application’s mind about what’s going wrong.  Add performance counters to the code and then ask what’s wrong.   
image4.png

image5.png

image6.png

image7.png

image1.png

image2.png

image3.png

